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Abstract. The three-body angular basis has been used to produce two infinite series of identities
for the associated Legendre polynomials which are mostly known as two-body objects. The
coefficients that are involved in the new sum rules are given in terms of the Clebsh–Gordan
coefficients.

1. Introduction

From the so-called ‘addition theorem’ for the Legendre polynomials (Landau and Lifshitz
1965) we easily find the identity

[P 0
l (cosθ)]2+ 2

l∑
m=1

[Pml (cosθ)]2 = (2l + 1)/2 (1)

wherePml (cosθ) are the normalized associated Legendre polynomials. Another identity of
a similar nature can be found elsewhere (Varshalovichet al 1988)

l∑
m=1

[mPml (cosθ)]2 = l(l + 1)(2l + 1)

8
sin2 θ. (2)

The right-hand side of (1) can be thought to be proportional to [P 0
0 (cosθ)]2 and that of

(2) is obviously proportional to [P 1
1 (cosθ)]2. On the other hand, the left-hand side of both

equations looks like the norm of the vector-column, whose components are proportional to
Pml (cosθ).

In the following we introduce three-body hyperspherical harmonics (HH) which, if
written in the body-fixed frame, can be factorized into the extrinsic part, depending on three
Euler-rotation angles, and the intrinsic one that depends on two hyperangles and describes
the deformation of the particle triangle. The optimized form of the intrinsic harmonics
(IHH) is a vector-column with components proportional toPml (cosθ) wherel is the Jacobi-
vector angular momentum andm serves as the projection of the total three-body angular
momentumJ onto the body-fixedz-axis. The total parity quantum numberp also influences
the vector-column dimension. The scalar product of two vector-columns corresponding to a
given (J, p)-pair should not depend on the choice of the quantization axis. This fact allows
one to produce two infinite series of the declared sum rules. In two simplest cases: one for
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5372 A V Matveenko and H Fukuda

normal parity states(p = (−)J ) and the other for abnormal parity states(p = −(−)J ) we
find (1) and (2), respectively. It is worth noting that the derivation is strongly related to a
formal quantum description of a free three-body problem in hyperspherical coordinates.

2. Three-body hyperspherical harmonics

For a three-body systema + b + c we introduce a Jacobi vector-pairX andx, whereX
is the position vector of particleb relative toa andx is the position vector of particlec
relative to the centre of mass ofa + b. Then, the hyperradiusR and the corresponding
reduced massesM andµ are given by

MR2 = MX2+ µx2 (3)
1

M
= 1

ma
+ 1

mb

1

µ
= 1

mc
+ 1

ma +mb . (4)

The mass factor in the left-hand side of the definition (3) is generally the free parameter
of the method. Its particular choice does not influence the discussion below. The kinetic
energy operator in the centre-of-mass system then reads

T = − 1

2M

1

R5

∂

∂R
R5 ∂

∂R
+ 32

2MR2
. (5)

The most commonly used space-fixed total set of five hyperangles is{α, x̂, X̂}, wherex̂
andX̂ define the polar angles of the corresponding vector direction and

α = arctan

(√
MX√
µx

)
. (6)

In this case

32 = − 1

sin2 2α

∂

∂α
sin2 2α

∂

∂α
+ l2

cos2 α
+ L2

sin2 α
(7)

where l = −ix × ∇x, L = −iX × ∇X are the corresponding angular momenta, and the
volume element is given by the expression

dv = R5 dR dô dô = (sinα cosα)2dα dx̂ dX̂. (8)

The HH are defined as solutions of the hyperangular part of the free Schrödinger equation

[32−K(K + 4)]YK(ô) = 0 K = 0, 1, . . . (9)

with the quantum number of the grand angular momentumK. For the chosen set of variables
we have the well known analytic form of the non-normalized HH

Y
JpMJ

KlL (α, x̂, X̂) = fKlL(α)YJpMJ

lL (x̂, X̂) (10)

with bipolar harmonics defined by

YJpMJ

lL (x̂, X̂) = [1+ p(−)l+L]
∑
m,m′

Ylm(x̂)YLm′(X̂)(l, L,m,m
′|J,MJ ) (11)

and

fKlL(α) = cosl α sinL αF

(
−n, K + l + L+ 4

2
, L+ 3

2
; sin2 α

)
. (12)

Here, the first parameter of the hypergeometric functionF , n = (K − L− l)/2, should be
non-negative.
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3. Optimized angular basis set

As Schwartz (1961) demonstrated, only a small set of values{l, L} is meaningful in (11)
if the ansatz (10) is to be used as the angular part of the three-body wave-function. The
corresponding values should satisfy

L+ l = J if p = (−)J (normal parity case) (13)

or

L+ l = J + 1 if p = −(−)J (abnormal parity case). (14)

As follows from (10) (Matveenko and Fukuda 1998), in the hyperspherical approach this
constraint is equivalent to the condition, see (12),

n = 0 (15)

the condition that suppresses theα-motion.
We also note that HH (11) are formally simpler in the rotated frame when the body-fixed

z-axis coincides with one of the Jacobi vectors:X or x. Thus, for example, if we choose
X as az-axis we find

Y
JpMJ

KlL (α, cosθ, γ, β, α̃) =
J∑

m′=0(1)

y
Jp

KlLm′(α, cosθ)BJpMJ

m′ (γ, β, α̃) (16)

where{α̃, β, γ } defines the corresponding space- to body-fixed rotation, andB
JpMJ

m′ is the
parity-preserving combination of the WignerD-functions (Matveenko and Fukuda 1996).

After substituting this form into the eigenvalue equation (9) and integrating over the
Euler angles, we arrive at the system of Schrodinger equations for the IHH, i.e. vector
column ||y(α, cosθ)||. Here, we use the analytic form of the solution (Matveenko and
Fukuda 1996) and note that owing to (13) or (14) we need only one indexl to number the
states of a given(J, p)-symmetry

||y||Jpl = (sinα)l(cosα)L



U
Jpl

0L P 0
l (cosθ)

U
Jpl

1L P 1
l (cosθ)
. . .

U
Jpl

lL P ll (cosθ)
0
. . .

0


(17)

where the coefficients

U
Jpl

mL = p(−)J+l+m
√

2− δ0m(l, J,−m,m|L, 0)

( l∑
m=0

(U
Jpl

mL )
2 = 1

)
(18)

were defined by Chang and Fano (1972) and cosθ = (Xx)/(Xx).

4. Sum rules

The solutions in the form (17) having the same(J, p)-symmetry are, of course, orthogonal
and can be normalized. The scalar product should include the summation over the projection
m of the total angular momentum onto the body-fixedz-axis and further integration over the
(α, θ)-variables. The sum overm is formally equivalent to the matrix multiplication of the
vector-column IHH (17) and the corresponding conjugate IHH. This operation produces a
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scalar function of two variables which no longer depends on the choice of the quantization
axis.

As we are not also interested in theα-dependence, therefore we form the partial scalar
product by summing overm and integrating overα to obtain a ‘bilinear’ form

σ
Jp

l1l2
(θ) =

min(l1,l2)∑
m

U
Jpl1
mL1

Pml1 (cosθ)UJpl2
mL2

Pml2 (cosθ) (19)

hereL1 andL2 are given by (13) or (14) depending on parity. The key point is that we
can produce this form twice for a given pair of IHH: (a) first keeping the Jacobi vector
X as the quantization axis and (b) usingx for that purpose. We should also take care to
ensure that when changing the quantization axis we also interchange the position ofl and
L quantum numbers in (17).

The final result is split into two series of sum rules for the associated Legendre
polynomials. In accordance with (13), for states of the normal parity (p = n) we have

σJnl1l2(θ) = σJnJ−l1,J−l2(θ) J = 0, 1 . . . (20)

where the summation in (19) starts withm = 0. For p = a (abnormal parity states) the
lowest possible value of the magnetic quantum numberm = 1 and the sum rules read, see
(14),

σJal1l2(θ) = σJaJ+1−l1,J+1−l2(θ) J = 1, 2 . . . . (21)

The underlying expression (19) forms a symmetrix matrix which has the dimension
(J + 1, J + 1) for normal parity states and (J, J ) for those of the abnormal parity. Thus,
equations (20) and (21) can be considered as relations between the corresponding matrix
elements. The total number of equalities is evidently proportional toJ 2. The majority of
them should be new. In section 5, we consider only simple examples when at least one of
the indices is the smallest.

5. Discussion and conclusion

Both results: the normal parity case (20) and the abnormal parity one (21) were checked
numerically. Chang and Fano’s (1972) coefficients, which are involved in the calculation,
are not complicated. Ifp = (−)J (normal parity),L = J − 1 and

UJnl
mL =

(
2

1+ δm0

(2l)!(2L+ 1)!(J −m)!(J +m)!
(2J + 1)!(l −m)!(l +m)!(L!)2

)1/2

(22)

otherwise, ifp = −(−)J , we haveL = J − l + 1 and

UJal
mL = 2Lm

(
2(2L+ 1)

(2l − 1)!(2L− 1)!(J −m)!(J +m)!
(2J + 2)!(l −m)!(l +m)!(L!)2

)1/2

. (23)

If l1 = l2 = 0, our sum rules (20) become simpler. Thus, using (22) we have

UJn0
0J = 1 and UJnJ

m0 =
(

2

(1+ δm0)(2J + 1)

)1/2

(24)

so thatσ(θ)Jn00 = σ(θ)JnJJ is equivalent to (1). Similarly, using (23) for the abnormal parity
case (nowl1 = l2 = 1 is the simplest case) we derive

UJa1
1J = 1 and UJaJ

m1 = m
(

6

J (J + 1)(2J + 1)

)1/2

(25)
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andσ(θ)Ja11 = σ(θ)JaJJ provides (2).
We conclude the paper by exposing several simple non-diagonal formulae, all having

one index in (20) or (21) to be the smallest. For normal parity states we obtain from
σ(θ)Jn0l = σ(θ)JnJ,J−l the peculiar form forP 0

l (cosθ)

P 0
l (cosθ) =

√
2√

2J + 1

J−l∑
m=0

√
2

1+ δm0

U
Jn,J−l
ml

UJnl
0,J−l

P mJ (cosθ)PmJ−l(cosθ). (26)

Similarly for abnormal parity states we obtain fromσ(θ)Ja1l = σ(θ)JaJ,J−l+1

UJa1
1J U

Jal
1,J−l+1P

1
l (cosθ)P 1

1 (cosθ) =
J−l+1∑
m=1

UJaJ
m1 U

Ja,J−l+1
ml PmJ (cosθ)PmJ−l+1(cosθ) (27)

with UJaJ
m1 given by (25).

If we take l = J − 1, we have from (26)

P 0
J−1(cosθ) =

[√
2J − 1 cosθP 0

J (cosθ)−
√
J + 1

J
sinθP 1

J (cosθ)

]
/
√

2J + 1 (28)

and from (27)

P 1
J−1(cosθ) =

√
2J − 1

(J + 1)(2J + 1)
[
√
J − 1 cosθP 1

J (cosθ)−√J + 2 sinθP 2
J (cosθ)].

(29)

These two equations look like and are recurrence relations.
The latter two simple formulae are derived as follows. First by puttingl = 2 into

(26) and, making the substitutionJ = l − 1 in the final result, in order to compare with
Varshalovichet al (1988), we arrive at

l(l + 1)

2
√

10
P 0

2 (cosθ) =
l−1∑
m=0

1

1+ δm0

√
(l2−m2)[(l + 1)2−m2]

(2l − 1)(2l + 3)
Pml+1(cosθ)Pml−1(cosθ). (30)

Second by puttingl = 3 in (27) for the abnormal counterpart of (30) we find

(J − 2)(J − 1)J (J + 1)

6
√

14
P 1

1 (cosθ)P 1
3 (cosθ)

=
J−2∑
m=1

m2

√
(J 2−m2)[(J − 1)2−m2]

(2J − 3)(2J + 1)
PmJ (cosθ)PmJ−2(cosθ). (31)

In conclusion, we note that the special three-body angular basis can be given in the
form including the associated Legendre polynomials. The partially fulfilled scalar product
for states from the basis can be used to produce new sum rules including the normalized
Pml (cosθ) and the Clebsh–Gordan coefficients (Varshalovichet al 1988). All the formulae
presented, except for (1), (2) and (30) and several trivial cases of (20) and (21), are thought
to be new.

References

Chang E S and Fano U 1972Phys. Rev.A 6 173
Landau L D and Lifshitz E M 1965Quantum Mechanics(Oxford: Pergamon)
Matveenko A V and Fukuda H 1996J. Phys. B: At. Mol. Opt. Phys.29 1575
Matveenko A V and Fukuda H 1998 to be published



5376 A V Matveenko and H Fukuda

Schwartz C 1961Phys. Rev.123 1700
Varshalovich D A, Moskalev A N and Khersonskiy V K 1988 Quantum theory of angular momentum (Singapore:

World Scientific)


